Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 112(3): 45, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429565

RESUMO

Crayfish rely on their chemosensory system for many essential behaviours including finding food, finding mates, and to recognize individuals. Copper can impair chemosensation in crayfish at low concentrations; however, it is not clear if the effect is ameliorated once copper is removed. To better understand the effect of and recovery from copper exposure in crayfish, we exposed Northern clearwater crayfish (Faxonius propinquus) to 31.3 [Formula: see text] copper for 24 h and measured the response of the crayfish to a food cue. The crayfish were then placed into clean water to depurate for an 24 h. The results demonstrated that the crayfish did not respond to a food cue if they had been exposed to copper, but showed a full response after a 24 h recovery period without copper. Higher concentrations of copper have shown a much longer-term effect in rusty crayfish (Faxonius rustics), indicating there is a concentration where the copper is causing longer-term damage instead of just impairing chemosensation. These results highlight the fact that even though contaminants like copper can have profound effects at low concentrations, by removing the contaminants the effect can be ameliorated.


Assuntos
Cobre , Poluentes Químicos da Água , Humanos , Animais , Cobre/toxicidade , Astacoidea/fisiologia , Alimentos Marinhos , Poluentes Químicos da Água/toxicidade , Água
2.
Nat Commun ; 15(1): 187, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38168076

RESUMO

Soils are losing increasing amounts of carbon annually to freshwaters as dissolved organic matter (DOM), which, if degraded, can offset their carbon sink capacity. However, the processes underlying DOM degradation across environments are poorly understood. Here we show DOM changes similarly along soil-aquatic gradients irrespective of environmental differences. Using ultrahigh-resolution mass spectrometry, we track DOM along soil depths and hillslope positions in forest catchments and relate its composition to soil microbiomes and physico-chemical conditions. Along depths and hillslopes, we find carbohydrate-like and unsaturated hydrocarbon-like compounds increase in abundance-weighted mass, and the expression of genes essential for degrading plant-derived carbohydrates explains >50% of the variation in abundance of these compounds. These results suggest that microbes transform plant-derived compounds, leaving DOM to become increasingly dominated by the same (i.e., universal), difficult-to-degrade compounds as degradation proceeds. By synthesising data from the land-to-ocean continuum, we suggest these processes generalise across ecosystems and spatiotemporal scales. Such general degradation patterns can help predict DOM composition and reactivity along environmental gradients to inform management of soil-to-stream carbon losses.


Assuntos
Matéria Orgânica Dissolvida , Microbiota , Compostos Orgânicos/análise , Solo/química , Carbono
3.
Sci Total Environ ; 904: 166734, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673266

RESUMO

Increasing forest cover by regreening mining and smelting degraded landscapes provides an opportunity for global carbon (C) sequestration, however, the reported effects of regreening on soil C processes are mixed. One of the world's largest regreening programs is in the City of Greater Sudbury, Canada and has been ongoing since 1978. Prior to regreening, soils in the City of Greater Sudbury area were highly eroded, acidic, rich in metals, and poor in nutrients. This study used a chronosequence approach to investigate how forest soil C pools and fluxes have changed with stand age in highly "eroded" sites with minimal soil cover (n = 6) and "stable" sites covered by soil (n = 6). Encouragingly, the relationship between stand age and soil C processes (litterfall, litter decomposition, soil respiration, fine root growth) at both stable and eroded sites were comparable to observations reported for jack pine (Pinus banksiana Lamb.) and red pine (Pinus resinosa Ait.) plantations that have not been subject to over a century of industrial impacts. There was a strong "home-field advantage" for local decomposers, where litter decomposition rates were higher using a site-specific pine litter compared with a common pine litter. Higher soil respiration at eroded sites was linked to higher soil temperature, likely because of a more open tree canopy. Forest floor C pools increased with stand age while mineral soil C and aggregate C concentrations decreased with stand age. This loss of soil C is small relative to the substantial increases in aboveground tree and forest floor C pools, leading to a sizeable increase in total ecosystem C pools following regreening.


Assuntos
Ecossistema , Pinus , Solo , Carbono/metabolismo , Florestas , Árvores/metabolismo , Pinus/metabolismo
4.
Microb Ecol ; 86(4): 2894-2903, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37632540

RESUMO

Peatlands store approximately one-half of terrestrial soil carbon and one-tenth of non-glacial freshwater. Some of these important ecosystems are located near heavy metal emitting smelters. To improve the understanding of smelter impacts and potential recovery after initial pollution controls in the 1970s (roughly 50 years of potential recovery), we sampled peatlands along a distance gradient of 134 km from a smelter in Sudbury, Ontario, Canada, an area with over a century of nickel (Ni) and copper (Cu) mining activity. This work is aimed at evaluating potential shifts in bacterial and archaeal community structures in Sphagnum moss and its underlying peat within smelter-impacted poor fens. In peat, total Ni and Cu concentrations were higher (0.062-0.067 and 0.110-0.208 mg/g, respectively) at sites close to the smelter and exponentially dropped with distance from the smelter. This exponential decrease in Ni concentrations was also observed in Sphagnum. 16S rDNA amplicon sequencing showed that peat and Sphagnum moss host distinct microbiomes with peat accommodating a more diverse community structure. The microbiomes of Sphagnum were dominated by Proteobacteria (62.5%), followed by Acidobacteria (11.9%), with no observable trends with distance from the smelter. Dominance of Acidobacteria (32.4%) and Proteobacteria (29.6%) in peat was reported across all sites. No drift in taxonomy was seen across the distance gradient or from the reference sites, suggesting a potential microbiome recovery toward that of the reference peatlands microbiomes after decades of pollution controls. These results advance the understanding of peat and Sphagnum moss microbiomes, as well as depict the sensitivities and the resilience of peatland ecosystems.


Assuntos
Metais Pesados , Sphagnopsida , Ecossistema , Solo/química , Ontário
5.
J Environ Manage ; 345: 118526, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37418824

RESUMO

Methyl mercury (MeHg) concentrations in boreal headwater streams are influenced by complex natural processes and disturbances such as forestry management. Understanding drivers of MeHg within boreal streams in Ontario, Canada, is of particular interest as there are legacy MeHg concerns. However, models accounting for the complexity of underlying processes have not yet been developed. We assessed how catchment characteristics and stream water chemistry influence MeHg concentrations within 19 watersheds of the Dryden - Wabigoon Forest in Ontario, Canada, using a structural equation modelling (SEM) approach. Despite the study area encompassing a large variation of boreal forest watersheds in the Canadian Shield, our SEM had substantial explanatory power across the region (χ251 = 45.37, p-value = 0.70, R2 = 0.75). Nitrate concentrations (p-value <0.001), water temperature (p-value = 0.002), and the latent watershed characteristic (p-value <0.001) had a positive influence on MeHg concentrations once variable interactions were accounted. Due to the inherent strengths of applying an SEM approach, we describe two plausible pathways driving MeHg concentrations: 1) indirect effect of forest-derived nutrients increases in-situ MeHg production in Dryden - Wabigoon Forest streams, and 2) direct supply of MeHg from inundated soils following consistent precipitation and inundation events (i.e., fill, sit, and spill).


Assuntos
Mercúrio , Poluentes Químicos da Água , Mercúrio/química , Ontário , Taiga , Florestas , Água , Poluentes Químicos da Água/química , Monitoramento Ambiental
6.
Nat Commun ; 14(1): 1571, 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944700

RESUMO

In this Perspective, we put forward an integrative framework to improve estimates of land-atmosphere carbon exchange based on the accumulation of carbon in the landscape as constrained by its lateral export through rivers. The framework uses the watershed as the fundamental spatial unit and integrates all terrestrial and aquatic ecosystems as well as their hydrologic carbon exchanges. Application of the framework should help bridge the existing gap between land and atmosphere-based approaches and offers a platform to increase communication and synergy among the terrestrial, aquatic, and atmospheric research communities that is paramount to advance landscape carbon budget assessments.

7.
Proc Natl Acad Sci U S A ; 119(41): e2202261119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36206369

RESUMO

Global change is altering the vast amount of carbon cycled by microbes between land and freshwater, but how viruses mediate this process is poorly understood. Here, we show that viruses direct carbon cycling in lake sediments, and these impacts intensify with future changes in water clarity and terrestrial organic matter (tOM) inputs. Using experimental tOM gradients within sediments of a clear and a dark boreal lake, we identified 156 viral operational taxonomic units (vOTUs), of which 21% strongly increased with abundances of key bacteria and archaea, identified via metagenome-assembled genomes (MAGs). MAGs included the most abundant prokaryotes, which were themselves associated with dissolved organic matter (DOM) composition and greenhouse gas (GHG) concentrations. Increased abundances of virus-like particles were separately associated with reduced bacterial metabolism and with shifts in DOM toward amino sugars, likely released by cell lysis rather than higher molecular mass compounds accumulating from reduced tOM degradation. An additional 9.6% of vOTUs harbored auxiliary metabolic genes associated with DOM and GHGs. Taken together, these different effects on host dynamics and metabolism can explain why abundances of vOTUs rather than MAGs were better overall predictors of carbon cycling. Future increases in tOM quantity, but not quality, will change viral composition and function with consequences for DOM pools. Given their importance, viruses must now be explicitly considered in efforts to understand and predict the freshwater carbon cycle and its future under global environmental change.


Assuntos
Gases de Efeito Estufa , Vírus , Amino Açúcares/metabolismo , Bactérias/genética , Bactérias/metabolismo , Carbono/metabolismo , Ciclo do Carbono , Gases de Efeito Estufa/metabolismo , Lagos/microbiologia , Vírus/genética , Vírus/metabolismo , Água/metabolismo
8.
Ecosystems ; 25(6): 1311-1327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36187364

RESUMO

The river continuum concept (RCC) predicts a downstream shift in the reliance of aquatic consumers from terrestrial to aquatic carbon sources, but this concept has rarely been assessed with longitudinal studies. Similarly, there are no studies addressing how forestry related disturbances to the structure of headwater food webs manifest (accumulate/dissipate) downstream and/or whether forest management alters natural longitudinal trends predicted by the RCC. Using stable isotopes of carbon, nitrogen and hydrogen, we investigated how: 1) autochthony in macroinvertebrates and fish change from small streams to larger downstream sites within a basin with minimal forest management (New Brunswick, Canada); 2) longitudinal trends in autochthony and food web length compare among three basins with different forest management intensity [intensive (harvest and replanting), extensive (harvest only), minimal] to detect potential cumulative/dissipative effects; and 3) forest management intensity and other catchment variables are influencing food web dynamics. We showed that, as predicted, the reliance of some macroinvertebrate taxa (especially collector feeders) on algae increased from small streams to downstream waters in the minimally managed basin, but that autochthony in the smallest shaded stream was higher than expected based on the RCC (as high as 90% for some taxa). However, this longitudinal increase in autochthony was not observed within the extensively managed basin and was weaker within the intensively managed one, suggesting that forest management can alter food web dynamics along the river continuum. The dampening of downstream autochthony indicates that the increased allochthony observed in small streams in response to forest harvesting cumulates downstream through the river continuum. Supplementary Information: The online version contains supplementary material available at 10.1007/s10021-021-00717-6.

9.
Ecotoxicology ; 31(8): 1231-1240, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36083423

RESUMO

The use of insecticides to control undesirable pest species in forestry has undergone a shift from broad spectrum to narrow spectrum insecticides to reduce the risk of effects on non-target species. However, there is still risk of direct effects on non-target species as some insecticides function as hormone mimics, or through indirect pathways as the insecticide is broken down in the environment. Tebufenozide, an ecdysone hormone mimic, is the active ingredient in insecticides used in a variety of large scale pest control programs. An oft cited reason for the safety of Tebufenozide is that it is rapidly broken down in the environment by microbes. We investigated the potential non-target effects of two Tebufenozide formulations used in Canada, Mimic 240LV and Limit 240, on aquatic communities using an outdoor mesocosm experiment. We focus on direct effects on amphibian larvae (wood frog, Rana sylvaticus), zooplankton communities, and effects on biofilm and phytoplanktonic microbial communities that could arise from either direct toxicity, or from breaking down the insecticide as a nutrient and/or carbon source. There was limited evidence for direct effects on amphibian larvae or zooplankton communities. There were small but non-significant shifts in biofilm microbial communities responsible for nutrient cycling. Beta diversity in the plankton community was slightly higher among tanks treated with insecticide indicating a community dispersion/disbiosis effect. Overall, we found limited evidence of negative effects, however, subtle changes to microbial communities did occur and could indicate changes to ecosystem function.


Assuntos
Inseticidas , Animais , Carbono , Ecdisona/farmacologia , Ecossistema , Hidrazinas , Inseticidas/farmacologia , Larva , Zooplâncton
10.
Environ Pollut ; 310: 119810, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35940481

RESUMO

Forest management can alter the mobilization of mercury (Hg) into headwater streams and its conversion to methylmercury (MeHg), the form that bioaccumulates in aquatic biota and biomagnifies through food webs. As headwater streams are important sources of organic materials and nutrients to larger systems, this connectivity may also increase MeHg in downstream biota through direct or indirect effects of forestry on water quality or food web structure. In this study, we collected water, seston, food sources (biofilm, leaves, organic matter), five macroinvertebrate taxa and fish (slimy sculpin; Cottus cognata) at 6 sites representing different stream orders (1-5) within three river basins with different total disturbances from forestry (both harvesting and silviculture). Methylmercury levels were highest in water and some food sources from the basin with moderate disturbance (greater clearcutting but less silviculture). Water, leaves, stoneflies and fish increased in MeHg or total Hg along the river continuum in the least disturbed basin, and there were some dissipative effects of forest management on these spatial patterns. Trophic level (δ15N) was a significant predictor of MeHg (and total Hg in fish) within food webs across all 18 sites, and biomagnification slopes were significantly lower in the basin with moderate total disturbance but not different in the other two basins. The elevated MeHg in lower trophic levels but its reduced trophic transfer in the basin with moderate disturbance was likely due to greater inputs of sediments and of dissolved organic carbon that is more humic, as these factors are known to both increase transport of Hg to streams and its uptake in primary producers but to also decrease MeHg bioaccumulation in consumers. Overall, these results suggest that the type of disturbance from forestry affects MeHg bioaccumulation and trophic transfer in stream food webs and some longitudinal patterns along a river continuum.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Florestas , Insetos
11.
Environ Toxicol Chem ; 41(6): 1490-1507, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297511

RESUMO

Forest harvesting affects dissolved organic matter (DOM) and aqueous mercury inputs as well as the food web structure in small-headwater streams, but how these upstream changes manifest downstream is unclear. To address this uncertainty, we examined DOM quality, autochthony in the caddisfly Hydropsychidae (using δ2 H), and methylmercury (MeHg) concentrations in stream water and the caddisfly along a longitudinal gradient (first- to fourth-order streams, subcatchments of 50-1900 ha) in paired partially harvested and reference catchments in central Ontario, Canada. Although measures of DOM quality (specific ultraviolet absorbance at 254 nm 2.20-11.62) and autochthony in caddisflies (4.9%-34.0%) varied among sites, no upstream-to-downstream differences in these measures were observed between the paired harvested and reference catchments. In contrast, MeHg levels in stream water (0.06-0.35 ng/L) and caddisflies (29.7-192 µg/kg dry wt) were significantly higher in the upstream sites but not the farthest downstream sites in the harvested catchments compared to the reference catchments. This suggests that while current mitigation measures used by forestry companies did not prevent elevated MeHg in water and invertebrates at smaller spatial scales (subcatchments of 50-400 ha), these upstream impacts did not manifest at larger spatial scales (subcatchments of 800-1900 ha). The present study advances our understanding of spatially cumulative impacts within harvested catchments, which is critical to help forest managers maintain healthy forest streams and their provisioning of aquatic ecosystem services. Environ Toxicol Chem 2022;41:1490-1507. © 2022 SETAC.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Bioacumulação , Carbono/química , Ecossistema , Florestas , Insetos , Mercúrio/análise , Ontário , Água , Poluentes Químicos da Água/análise
12.
Nat Commun ; 12(1): 6355, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732733

RESUMO

Insect defoliators alter biogeochemical cycles from land into receiving waters by consuming terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) concentrations in lake waters when defoliators covered entire catchments and reduced leaf area. DOC reductions reached 32% when deciduous stands dominated. Within-year changes in DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of 266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661 km2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeochemical cycles in forest catchments of this region.


Assuntos
Surtos de Doenças , Ecologia , Florestas , Nutrientes , Doenças das Plantas , Animais , Biomassa , Carbono , Mudança Climática , Ecossistema , Insetos , Lagos , Ontário
13.
Sci Total Environ ; 753: 141968, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32911166

RESUMO

Though effects of forest harvesting on small streams are well documented, little is known about the cumulative effects in downstream systems. The hierarchical nature and longitudinal connectivity of river networks make them fundamentally cumulative, but lateral and vertical connectivity and instream processes can dissipate the downstream transport of water and materials. To elucidate such effects, we investigated how a suite of abiotic indicators changed from small streams to larger downstream sites (n = 6) within three basins ranging in forest management intensity (intensive, extensive, minimal) in New Brunswick (Canada) in the summer and fall of 2017 and 2018. Inorganic sediments, the inorganic/organic ratios and water temperatures significantly increased longitudinally, whereas nutrients and the fluorescence index of dissolved organic carbon (DOC; indication of terrestrial source) decreased. However, some longitudinal trends differed across basins and indicated downstream cumulative (inorganic sediments, the inorganic/organic ratios and to a lesser extent DOC concentration and humification) as well as dissipative (temperatures, nutrients, organic sediments) effects of forest management. Overall, we found that the effects previously reported for small streams with managed forests also occur at downstream sites and suggest investigating whether different management practices can be used within the extensive basin to reduce these cumulative effects.

14.
Sci Total Environ ; 763: 144043, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33383512

RESUMO

The effects of forest harvesting on headwaters are quite well understood, yet our understanding of whether impacts accumulate or dissipate downstream is limited. To address this, we investigated whether several biotic indicators changed from smaller to larger downstream sites (n = 6) within three basins that had intensive, extensive or minimal forest management in New Brunswick (Canada). Biofilm biomass and grazer abundance significantly increased from upstream to downstream, whereas organic matter decomposition and the autotrophic index of biofilms decreased. However, some spatial trends differed among basins and indicated either cumulative (macroinvertebrate abundance, predator density, sculpin GSI) or dissipative (autotrophic index, cotton decomposition) effects downstream, potentially explained by sediment and nutrient dynamics related to harvesting. No such among-basin differences were observed for leaf decomposition, biofilm biomass, macroinvertebrate richness or sculpin condition. Additionally, results suggest that some of the same biological impacts of forestry observed in small headwaters also occurred in larger systems. Although the intensive and extensive basins had lower macroinvertebrate diversity, there were no other signs of biological impairment, suggesting that, overall, current best management practices protect biological integrity downstream despite abiotic effects.


Assuntos
Florestas , Invertebrados , Animais , Biomassa , Canadá , Ecossistema , Agricultura Florestal
15.
ISME J ; 14(8): 2153-2163, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32424248

RESUMO

Shallow lake sediments harbor methanogen communities that are responsible for large amounts of CH4 flux to the atmosphere. These communities play a major role in degrading in-fluxed terrestrial organic matter (t-OM)-much of which settles in shallow near-shore sediments. Little work has examined how sediment methanogens are affected by the quantity and quality of t-OM, and the physicochemical factors that shape their community. Here, we filled mesocosms with artificial lake sediments amended with different ratios and concentrations of coniferous and deciduous tree litter. We installed them in three boreal lakes near Sudbury, Canada that varied in trophic status and water clarity. We found that higher endogenous nutrient concentrations led to greater CH4 production when sediment solar irradiance was similar, but high irradiance of sediments also led to higher CH4 concentrations regardless of nutrient concentrations, possibly due to photooxidation of t-OM. Sediments with t-OM had overall higher CH4 concentrations than controls that had no t-OM, but there were no significant differences in CH4 concentrations with different t-OM compositions or increasing concentrations over 25%. Differences among lakes also explained variation in methanogen community structure, whereas t-OM treatments did not. Therefore, lake characteristics are important modulators of methanogen communities fueled by t-OM.


Assuntos
Atmosfera , Lagos , Canadá , China , Sedimentos Geológicos
16.
Sci Total Environ ; 710: 135906, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-31926407

RESUMO

Transformative advances in metagenomics are providing an unprecedented ability to characterize the enormous diversity of microorganisms and invertebrates sustaining soil health and water quality. These advances are enabling a better recognition of the ecological linkages between soil and water, and the biodiversity exchanges between these two reservoirs. They are also providing new perspectives for understanding microorganisms and invertebrates as part of interacting communities (i.e. microbiomes and zoobiomes), and considering plants, animals, and humans as holobionts comprised of their own cells as well as diverse microorganisms and invertebrates often acquired from soil and water. The Government of Canada's Genomics Research and Development Initiative (GRDI) launched the Ecobiomics Project to coordinate metagenomics capacity building across federal departments, and to apply metagenomics to better characterize microbial and invertebrate biodiversity for advancing environmental assessment, monitoring, and remediation activities. The Project has adopted standard methods for soil, water, and invertebrate sampling, collection and provenance of metadata, and nucleic acid extraction. High-throughput sequencing is located at a centralized sequencing facility. A centralized Bioinformatics Platform was established to enable a novel government-wide approach to harmonize metagenomics data collection, storage and bioinformatics analyses. Sixteen research projects were initiated under Soil Microbiome, Aquatic Microbiome, and Invertebrate Zoobiome Themes. Genomic observatories were established at long-term environmental monitoring sites for providing more comprehensive biodiversity reference points to assess environmental change.


Assuntos
Metagenômica , Solo , Animais , Biodiversidade , Canadá , Água Doce , Humanos
17.
Sci Rep ; 9(1): 18218, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31796780

RESUMO

Terrestrial arthropod fauna have been suggested as a key indicator of ecological integrity in forest systems. Because phenotypic identification is expert-limited, a shift towards DNA metabarcoding could improve scalability and democratize the use of forest floor arthropods for biomonitoring applications. The objective of this study was to establish the level of field sampling and DNA extraction replication needed for arthropod biodiversity assessments from soil. Processing 15 individually collected soil samples recovered significantly higher median richness (488-614 sequence variants) than pooling the same number of samples (165-191 sequence variants) prior to DNA extraction, and we found no significant richness differences when using 1 or 3 pooled DNA extractions. Beta diversity was robust to changes in methodological regimes. Though our ability to identify taxa to species rank was limited, we were able to use arthropod COI metabarcodes from forest soil to assess richness, distinguish among sites, and recover site indicators based on unnamed exact sequence variants. Our results highlight the need to continue DNA barcoding local taxa during COI metabarcoding studies to help build reference databases. All together, these sampling considerations support the use of soil arthropod COI metabarcoding as a scalable method for biomonitoring.


Assuntos
Artrópodes/genética , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , Variação Genética/genética , Animais , DNA/genética , DNA/isolamento & purificação , Florestas , Análise de Sequência de DNA/métodos , Solo
18.
Proc Natl Acad Sci U S A ; 116(49): 24689-24695, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31740592

RESUMO

Invisible to the naked eye lies a tremendous diversity of organic molecules and organisms that make major contributions to important biogeochemical cycles. However, how the diversity and composition of these two communities are interlinked remains poorly characterized in fresh waters, despite the potential for chemical and microbial diversity to promote one another. Here we exploited gradients in chemodiversity within a common microbial pool to test how chemical and biological diversity covary and characterized the implications for ecosystem functioning. We found that both chemodiversity and genes associated with organic matter decomposition increased as more plant litterfall accumulated in experimental lake sediments, consistent with scenarios of future environmental change. Chemical and microbial diversity were also positively correlated, with dissolved organic matter having stronger effects on microbes than vice versa. Under our experimental scenarios that increased sediment organic matter from 5 to 25% or darkened overlying waters by 2.5 times, the resulting increases in chemodiversity could increase greenhouse gas concentrations in lake sediments by an average of 1.5 to 2.7 times, when all of the other effects of litterfall and water color were considered. Our results open a major new avenue for research in aquatic ecosystems by exposing connections between chemical and microbial diversity and their implications for the global carbon cycle in greater detail than ever before.


Assuntos
Biodiversidade , Ciclo do Carbono , Água Doce/química , Água Doce/microbiologia , DNA Ambiental/genética , DNA Ambiental/isolamento & purificação , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Gases de Efeito Estufa/análise , Lagos , Metagenoma/genética , Metagenômica/métodos , Traqueófitas/química
19.
ISME J ; 13(1): 1-11, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30042502

RESUMO

How ecosystem functioning changes with microbial communities remains an open question in natural ecosystems. Both present-day environmental conditions and historical events, such as past differences in dispersal, can have a greater influence over ecosystem function than the diversity or abundance of both taxa and genes. Here, we estimated how individual and interactive effects of microbial community structure defined by diversity and abundance, present-day environmental conditions, and an indicator of historical legacies influenced ecosystem functioning in lake sediments. We studied sediments because they have strong gradients in all three of these ecosystem properties and deliver important functions worldwide. By characterizing bacterial community composition and functional traits at eight sites fed by discrete and contrasting catchments, we found that taxonomic diversity and the normalized abundance of oxidase-encoding genes explained as much variation in CO2 production as present-day gradients of pH and organic matter quantity and quality. Functional gene diversity was not linked to CO2 production rates. Surprisingly, the effects of taxonomic diversity and normalized oxidase abundance in the model predicting CO2 production were attributable to site-level differences in bacterial communities unrelated to the present-day environment, suggesting that colonization history rather than habitat-based filtering indirectly influenced ecosystem functioning. Our findings add to limited evidence that biodiversity and gene abundance explain patterns of microbiome functioning in nature. Yet we highlight among the first time how these relationships depend directly on present-day environmental conditions and indirectly on historical legacies, and so need to be contextualized with these other ecosystem properties.


Assuntos
Bactérias/classificação , Biodiversidade , Ecossistema , Microbiologia Ambiental , Bactérias/genética , Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Variação Genética , Lagos/microbiologia , Microbiota , Modelos Biológicos
20.
Front Microbiol ; 9: 2662, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30459741

RESUMO

The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails (Typha latifolia) and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi Phlebia spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH4 production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...